Modular Autonomous Launch Platform For A Martian Ascent Vehicle Analogue Mission

Critical Design Review 2015 NASA Student Launch

Arizona State University
School of Earth and Space Exploration

CDR OVERVIEW

- SLP Mission
- Launch Vehicle
 - Airframe Design
 - Motor Selection
 - Recovery and Electronics
 - Vehicle Performance
 - Verification and Testing Plan
- Autonomous Ground Support Equipment
 - Autonomous Retrieval Mechanism (ARM)
 - Modular Autonomous Launch Platform (MALP)
 - Motor Igniter Insertion System (MIIS)
 - Payload Bay Assembly
- Subscale Test Flight
- Requirements Verification Status
- Budget & Schedule
- Educational Engagement Progress

ABOUT ICARUS ROCKETRY

- Newly founded team at Arizona State University in the School of Earth and Space Exploration
- Composed of graduate and undergraduate students
 - 4 Ph.D. students
 - 3 M.S. students
 - 12 B.S. and B.S.E. students
 - Disciplines Studied: Astrophysics, Planetary Geology, Mechanical Engineering, Aerospace Engineering, Electrical Engineering

ICARUS MISSION STATEMENT

To engage students in the exploration, design, and development of High Power Rocketry launch vehicles to expand their knowledge of rocketry and engineering through competition, and ultimately build a launch system to fly beyond the von Karman line.

MISSION SUCCESS CRITERIA

- 1) ARM successfully acquires payload and deposits it in rocket
- 2) MALP raises the launch vehicle to 5° off vertical
- 3) MIIS installs the igniter in the rocket
- 4) Successfully launch and maintain and stable flight trajectory to apogee
- 5) Attain an apogee between 2,800 and 3,200 ft AGL
- 6) Eject and deploy a drogue parachute within 1 to 2 seconds after reaching apogee
- 7) Eject and separate the nosecone/sample bay from the rest of the launch vehicle at 1,000 ft AGL and:
 - a) Deploy the nosecone/sample bay parachute
 - b) Deploy the launch vehicle's main parachute
- 8) Successfully recover the launch vehicle and sample bay
- 9) Minimal damage to the launch vehicle or sample bay post-flight

SLP MISSION STATEMENT

To successfully launch a simulated Mars sample return mission payload to an altitude of 3000ft AGL, deploy the payload bay containing the payload at 1000ft AGL, and recover all launch vehicle components.

VEHICLE OVERVIEW

Length: 103 in

Diameter: 4.02 in

Mass: 11.0 lbs (empty)

13.8 lbs (w/ motor)

Materials

Nosecone: Fiberglass

Airframe: BlueTube 2.0

Fins: Birch Plywood

Stability Margin: 1.98

• CG: 55.057"

CP: 63.088"

Recovery System

18 in drogue parachute

60 in main parachute

VEHICLE DESIGN

- Compartmentalized Construction
- Nosecone/Sample Containment Bay/GPS Bay
- Main Parachute Bay
- Electronics Bay
- Drogue Parachute Bay

VEHICLE MATERIALS

BlueTube 2.0 Airframe

- Strong, durable airframe material
- Better impact resistance than non-composite airframes
- Lighter than fiberglass and RF transparent

Fiberglass Nosecone

- Slighter heavier for more forward CG placement
- Better durability and impact resistance

Birch Plywood Fins and Centering Rings

- Good strength-to-weight ratio
- Easier and safer to machine and shape compared to composites

AIRFRAME

- BlueTube 2.0
- 4.02" Outer Diameter
- Electronics Bay: 8"
- Main Parachute Bay: 16"
- Drogue Parachute Bay: 11"
- Sample Payload/GPS Bay: 13"
- 2.15" ID BlueTube Motor Mount: 25"

NOSECONE

- Manufacturer: Wildman Rocketry
- 4" Von Karman Fiberglass 5:1 Nosecone
 - Replaced plans for Shockwave Rocketry 6:1 Nosecone due to business closure
- Drag optimized, with hard-surface outer skin and fiberglass casing
 - Screw-in aluminum tip
- 19.75" exposed, 5.375" shoulder, 0.824 lbs

FIN DESIGN

- "Aggressor" Fin Design
 - Previously developed and used by the team
 - Forward-swept clipped delta
 - Low-aspect ratio
 - Sharp forward-swept trailing edge minimizes shearing and fin damage on impact
- Through-the-wall fin mount
 - Internal cavity filled with 4lb density closed-cell polyurethane expanding foam for increased support

MOTOR SELECTION

- Aerotech J800T
- APCP motor with Blue Thunder formulation
- Rouse-Tech 54/2560 Motor Casing
 - Aerotech 54mm Reload Adapter System

Thrust-to-weight ratio: 13.03

Rail exit velocity: 108 ft/s

Mass Margin: 0.217 (3lbs)

- OpenRocket simulations demonstrate that the motor best fits the mission requirements
 - Several motors meet the altitude window for mission success criteria, but were ruled out for various reasons

MOTOR MOUNT & RECOVERY

- Aeropack 54mm retainer
- Giant Leap Rocketry Hardpoint Anchor
- Shockcord: ¼" Tubular braided Kevlar, 3600lb test
- 2.25" swivels, 1500lb test
- ¼" quick links, 880lb test
- 1/4" U-bolt, 2000lb test

RECOVERY SYSTEM

Drogue Parachute

- Public Missiles 18" parachute with 4" spill hole
- $C_D = 0.80$
- 1.9 oz urethane coated ripstop nylon

Main Parachute (x2)

- Fruity Chutes Classic Elliptical 60" parachute
- $C_D = 1.6$
- 1.1 oz Mil-spec calendared ripstop nylon
- One parachute will be dedicated to the launch vehicle; a separate parachute will be dedicated to the payload bay

RECOVERY SYSTEM

Shock Cord = ○

Siren = -

IMPACT KINETIC ENERGY

•
$$KE_{SampleBay} = 0.7376 \frac{ft \cdot lbf}{J} \left[1/2(5.452kg) \left(4.6 \frac{m}{s} \right)^2 \right]$$

$$KE_{SampleBay} = 30.60 ft \cdot lbf$$

•
$$KE_{Airframe} = 0.7376 \frac{ft \cdot lbf}{J} \left[1/2(0.609 \, kg) \left(4.6 \frac{m}{s} \right)^2 \right]$$

$$KE_{Airframe} = 4.75 \, ft \cdot lbf$$

ELECTRONICS - RECOVERY

- Dual-redundant, independent altimeters for recovery
 - PerfectFlite Stratologger
 - Supports up to 100 Kft, Mach capable, brownout protection, wind and sunlight resistant sensor
 - MissileWorks RRC3
 - Supports up to 100 Kft, Mach capable, brownout protection, velocity and temperature telemetry

ELECTRONICS – GPS BAY

- GPS Telemetry for Payload Sample Bay & Electronics Bay provided by Eggfinder GPS
- Kits require assembly, but much cheaper
 - Similar performance to original BRB9000 selected
- 100mW, 900 Mhz spread spectrum transmitter
- Matching receiver with USB interface for computer integration

ELECTRONICS BAY SCHEMATIC

Hull Button =

MOTOR THRUST CURVE

FLIGHT DYNAMICS

Predicted Altitude: 3,201ft

Max Acceleration: 16.8G

Max Velocity: 525 ft/s

Airframe Drift (worst cases)

Wind Speed (mph)	Drift (ft)
0	701
5	1316
10	-1941
15	-2531
20	-3120

FLIGHT DYNAMICS

Worst-case scenario airframe drift

Wind Speed 20 mph

Flight side profile

FLIGHT DYNAMICS

Worst-case scenario airframe drift velocity

LAUNCH VEHICLE VERIFICATION AND TESTING PLAN

Launch Vehicle Requirement Verification Plan

- Verification plan for each SOW requirement
 - relevant design features
 - verification method (design, testing, inspection, schedule)
 - status of verifications (as of CDR)

Risk Assessment

- Major risks to project success
- Specific potential impacts to project
- Mitigation plan for each risk

Hazard Assessment

- Major hazards to team members during construction and operation of the vehicle
- Mitigation plan for each hazard
 - Safety Briefing (NAR Safety Code, FAA Regulations, Tool Use, etc)
 - Specialized Safety Training (Machine Shop Tools, etc)

LAUNCH VEHICLE VERIFICATION AND TESTING PLAN

Failure Mode Analysis

- Identification of Failure Modes
 - Vehicle/AGSE Design and Construction
 - AGSE Operations
 - Autonomous Launch Operations
- Mitigation plan for each failure mode

Mentor-Supervised Testing and Operations

- Tests Involving Prohibited Items
 - Ground testing of parachute deployment (ejection charge)
 - Full-scale test flight (ejection charge and ACPC motor)

LAUNCH VEHICLE VERIFICATION AND TESTING PLAN

- OpenRocket simulations to establish baseline performance characteristics
 - Verify required altitude can be reached
 - Verify safe recovery of all sections can be achieved
- Ground testing of Electronic Systems
 - Verify electrical components are free of interference
 - Verify system can meet on-pad time requirements
- Ground Testing of Recovery System Deployment
 - Conducted under the supervision of the team's mentor
- Multiple Test Flights
 - Sub-Scale: Verify performance prediction methods, assembly techniques, electronics designs, etc
 - Full-Scale: Verify performance of all vehicle and AGSE systems

Support Towers

• Height: 38.5"

• Footprint: 25.6"x40"

Total Footprint: 61.04"x40"

Launch Rail

• Length: 12.75'

AGSE OVERVIEW - ARM

AGSE OVERVIEW - MIIS

AGSE OVERVIEW - PAYLOAD BAY

 Secured in launch vehicle airframe

Diameter: 3.9in

Mass: 609g

Materials

Aluminum 6061

Cardboard

AGSE/PAYLOAD DESIGN

- The AGSE will be responsible for:
 - autonomously loading the payload into the vehicle's payload bay
 - raising the véhicle into a near-vertical launch position
 - · inserting the motor igniter in preparation for launch.
- Begins with vehicle secured to the launch rail in a horizontal position with the payload bay door opening upward.
- Pick up the sample capsule, raise it above the vehicle, and drop it into the payload bay
- Payload bay doors will automatically close once capsule has been placed inside and will lock shut
- Uses servo motors to raise the launch rail into a near-vertical position in preparation for launch
- Motor Igniter Insertion System will autonomously insert the igniter into the motor.
- The AGSE will then activate a "Ready to Launch" light, after which the hard-wired remote launch button will be used to ignite the motor and begin the flight.

MODULAR AUTONOMOUS LAUNCH PLATFORM (MALP)

MALP TOWERS WITH STRUTS

Bullet point descriptions

AUTONOMOUS RETRIEVAL MECHANISM (ARM)

Bullet point descriptions

MOTOR IGNITER INSERTION SYSTEM (MIIS)

PAYLOAD BAY ASSEMBLY

- Secured inside airframe
- Doors open upward when vehicle is in horizontal position
- ARM will drop payload onto inner bay doors
- Mass of payload will rotate outer doors into closed position
- Magnets will lock the doors closed for launch

AGSE/PAYLOAD VERIFICATION AND TESTING PLAN

Pre-Launch Testing of Major AGSE Systems

- Electronics ("Start" and "Pause" buttons, status lights)
- Payload retrieval system
- Payload encapsulation system
- Moving vehicle to launch-ready position
- Igniter insertion (using motor mock-up)

Full AGSE SystemsTest

- Verify all subsystems work together
- Verify all operations are completed within time limit

Full-Scale Test Flight

Verify AGSE performs all required functions

SUBSCALE TEST FLIGHT

- Date: Dec 13th, 2014
- Aerotech K456DM
- Rouse-Tech 54/2560 casing
- Altitude
 - Expected: 6,020 ft AGL
 - Actual: 5,977 ft AGL
- Stability Margin: 2.314

Successful Test Flight!

Vehicle Requirements

Requirement	Status
1.1	In-Process
1.2	Verified
1.3	In-Process
1.4	<u>Verified</u>
1.5	<mark>Verified</mark>
1.6	In-Process
1.7	In-Process
1.8	In-Process
1.9	<u>Verified</u>
1.10	In-Process

Requirement	Status
1.11	In-Process
1.12	Verified
1.13	Verified
1.14	In-Process
1.15	In-Process
1.16	<mark>Verified</mark>

^{*} See Tables 1-5 in the CDR Report for Detailed Verification Plan and Status

Recovery Requirements

Requirement	Status
2.1	<mark>Verified</mark>
2.2	<mark>Verified</mark>
2.3	In-Process
2.4	<mark>Verified</mark>
2.5	Verified
2.6	Verified
2.7	Verified
2.8	Verified
2.9	Verified
2.10	In-Process

Requirement	Status
2.11	In-Process

^{*} See Tables 1-5 in the CDR Report for Detailed Verification Plan and Status

Maxi-MAV Competition Requirements

Requirement	Status
3.2.1.1	<mark>Verified</mark>
3.2.1.2	In-Process
3.2.1.3	In-Process
3.2.1.4	In-Process
3.2.1.5	In-Process
3.2.1.6	In-Process
3.2.1.7	In-Process
3.2.1.8	In-Process
3.2.1.9	In-Process
3.2.1.10	In-Process

Requirement	Status
3.2.1.11	In-Process
3.2.1.12	In-Process

^{*} See Tables 1-5 in the CDR Report for Detailed Verification Plan and Status

Safety Requirements

Requirement	Status
4.1	In-Process
4.2	In-Process
4.3	In-Process
4.4	In-Process
4.5	In-Process
4.6	In-Process

Requirement	Status

^{*} See Tables 1-5 in the CDR Report for Detailed Verification Plan and Status

Recovery Requirements

Requirement	Status
5.1	In-Process
5.2	In-Process
5.3	In-Process
5.4	Verified
5.5	Verified
5.6	In-Process
5.7	In-Process
5.8	In-Process
5.9	In-Process
5.10	In-Process

Requirement	Status
5.11	In-Process
5.12	In-Process

^{*} See Tables 1-5 in the CDR Report for Detailed Verification Plan and Status

BUDGET

Budget Item	Cost
Electronics	\$589.16
MALP	\$1645.92
Build Materials	\$849.0
Propulsion	\$224.97
Sample Containment Bay	\$44.98
MIIS	\$693.51
Recovery	\$720.65
Tools	\$400.00
Outreach	\$2,492.94
Travel	\$3,368.78

SCHEDULE

Event	Dates
Design Period	11/17-1/16
Corporate Funding Campaign	11/17-3/1
Subscale Work	11/17-12/12
Pitchfunder Campaign Setup	11/17-12/8
Subscale Model Launch at SARA Club Launch	12/13/14
Ejection charge test	12/13/14
Fullscale Work	12/14-2/15
MALP/MIIS/Payload Bay Manufacturing	12/15-2/15
Pitchfunder Campaign	1/5-2/5
Critical Design Review	1/16
MALP/MIIS/Payload Bay Testing Complete	
Fullscale Model Launch	2/15

EDUCATIONAL ENGAGEMENT

- Reached over 300 students through informal engagement
 - Earth and Space Exploration Day (Oct 25th, 2014)
- Reached over 50 students through informal engagement
 - Akimel A-al Middle School (Dec 9th, 2014)
- Upcoming engagement in February and March 2015!

QUESTIONS?

