Modular Autonomous Launch Platform For A Martian Ascent Vehicle Analogue Mission

Preliminary Design Review 2015 NASA Student Launch

VEHICLE DIMENSIONS, MATERIALS, AND JUSTIFICATIONS

Dimensions:

- 98 mm Diameter
 Airframe
- 107" length
- 15.9 lb mass
- 13.4 lbs w/o motor

Materials:

- Shockwave Rocketry Fiberglass Nosecone
- MAV Payload
- Blue Tube 2.0
- Birch Plywood Centering & Fins

STATIC STABILITY MARGIN

 A dimensionless number computed by taking the difference in the center of gravity and center of pressure of the rocket divided by the body tube diameter

Stability Margin: 3.17

• CP: 67.342

• CG: 54.595

Borderline over stable.

PLAN FOR VEHICLE SAFETY VERIFICATION AND TESTING

- The Safety Officer, in coordination with the Project Manager and the subsystem team leads, will develop safety checklists for use during launch preparations.
- The Safety Officer, in coordination with the team's mentor, will organize ground tests requiring handling of prohibited materials.
- The Safety Officer will be responsible for ensuring all flights are completed in accordance with NAR and FAA regulations.
- The Safety Officer will be responsible for verifying the completion of all safety checklist items prior to launches.

BASELINE MOTOR SELECTION AND JUSTIFICATION

- J800T-16
- Ammonium Perchlorate Composite Propellant
- OpenRocket simulations demonstrate that the motor best fits the mission requirements

THRUST-TO-WEIGHT RATIO AND RAIL EXIT VELOCITY

- Thrust to weight ratio: 11.3
- Rail exit velocity: 102 ft/s

LAUNCH VEHICLE VERIFICATION AND TEST PLAN OVERVIEW

- OpenRocket simulations
 - Ensure simulations lead to a successful recovery
- Test electronics before launching
- Ensure proper fuel is being used
- Multiple test flights
 - Test system functions
 - Test motor

ELECTRONICS PAYLOAD BAY SCHEMATIC

IGNITER COMPONENT

ARM

TOWER WITH STRUTS

FINAL ASSEMBLY

BASELINE AGSE/PAYLOAD DESIGN

- The AGSE will be responsible for:
 - autonomously loading the payload into the vehicle's payload bay
 - raising the vehicle into a near-vertical launch position
 - inserting the motor igniter in preparation for launch.
- Begins with vehicle secured to the launch rail in a horizontal position with the payload bay door opening upward.
- Pick up the sample capsule, raise it above the vehicle, and drop it into the payload bay
- Payload bay doors will automatically close once capsule has been placed inside and will lock shut
- Uses servo motors to raise the launch rail into a near-vertical position in preparation for launch
- Motor Igniter Insertion System will autonomously insert the igniter into the motor.
- The AGSE will then activate a "Ready to Launch" light, after which the hardwired remote launch button will be used to ignite the motor and begin the flight.

AGSE/PAYLOAD VERIFICATION AND TEST PLAN OVERVIEW

- Test that payload fits within given parameters
- Verify all components are manufactured as designed
- Verify full-scale test flight proves that the AGSE can carry out its mission objectives within the set time limit

THANK YOU!

